diff --git a/Implementing_EdgeR.R b/Implementing_EdgeR_Fig5.R similarity index 67% rename from Implementing_EdgeR.R rename to Implementing_EdgeR_Fig5.R index 7c56c16379e455585aa515e56f2b08d1f4065726..7c260bce2071f012114c1369163d180eb960ee36 100644 --- a/Implementing_EdgeR.R +++ b/Implementing_EdgeR_Fig5.R @@ -143,3 +143,60 @@ dev.off() hmap_order <- data.frame(qlf_heatmap_mat_ind[(hr_qlf$labels), ]) write.csv(hmap_order ,"Betty_qlfheatmap.csv") +## Make average columns for Invading (I) versus Non-Invading (NI) +#extract just non-invading +Betty_qlf_heatmap_mat_NI <- cbind(Gene_name=qlf_heatmap_mat_ind_names$Genename,qlf_heatmap_mat_ind_names[ ,grepl("N",colnames(qlf_heatmap_mat_ind_names))]) +#extract just invading +Betty_qlf_heatmap_mat_I <- cbind(Gene_name=qlf_heatmap_mat_ind_names$Genename,qlf_heatmap_mat_ind_names[ ,grepl("I",colnames(qlf_heatmap_mat_ind_names))]) + +# "gather" to average +Betty_qlf_heatmap_I_melt <- gather(Betty_qlf_heatmap_mat_I,"variable", "value",2:5) +Betty_qlf_heatmap_N_melt <- gather(Betty_qlf_heatmap_mat_NI,"variable", "value", 2:5) +# then employ dpylr for averaging +Betty_qlf_heatmap_I_melt_mean<- ddply(Betty_qlf_heatmap_I_melt, c("Gene_name"), summarise, + mean_I=mean(value)) +Betty_qlf_heatmap_N_melt_mean<- ddply(Betty_qlf_heatmap_N_melt, c("Gene_name"), summarise, + mean_N=mean(value)) +##attach these +Betty_mean_N_and_I <- cbind(Betty_qlf_heatmap_I_melt_mean,Betty_qlf_heatmap_N_melt_mean) +#now make the logFC column +Betty_mean_FC_I <- (Betty_mean_N_and_I$mean_I-Betty_mean_N_and_I$mean_N) +Betty_mean_N_and_I_FC<- cbind(Betty_mean_N_and_I[ ,c(1,2,4)],Betty_mean_FC_I ) +#prep for heatmap, make into matrix +rownames(Betty_mean_N_and_I_FC) <- Betty_mean_N_and_I_FC$Gene_name +Betty_mean_N_and_I_FC_mat <- as.matrix(type.convert(Betty_mean_N_and_I_FC[ ,c(2,3,4)],na.strings = "NA", as.is = FALSE, dec = ".")) +#cluster the rows +hr <- hclust(as.dist(1-cor(t(Betty_mean_N_and_I_FC_mat[ ,c(1,2)]), method="pearson")), + method="average") +Betty_mean_N_and_mat <- Betty_mean_N_and_I_FC_mat[ ,1:2] +setwd('/Users/erica/Desktop/Betty_DGE/Figs') +pdf(file='Betty_F5A.pdf', width=5, height=8,bg="white") +par(mar=c(9,6,6,3)+0.2, pin=c(0,0)) +col_breaks <-c(seq(0,2.4,0.2),seq(3,5,0.5),6,7.5,10,12.5,15) +heatmap.2(Betty_mean_N_and_mat, # data matrix + trace="none", + margins =c(8,8), # widens margins around plot + col=viridis, # use on color palette defined earlier + breaks=col_breaks, # enable color transition at specified limits + labCol = c("Average I","Average N"), + cexCol = 1.5, + dendrogram="none", # only draw a row dendrogram + Colv=F, + Rowv=as.dendrogram(hr), + hclustfun = hclust, + keysize = 1, + labRow = FALSE, + key.xlab = "CPM", + key.title = NA, + densadj = 0.5, + density.info="density", + denscol = "white", + lmat = lmat, + lwid = lwid, + lhei = lhei) # turn off column clustering +dev.off() # close the PNG device + +hc <- hclust(as.dist(1-cor(Betty_mean_N_and_I_FC_mat, method="spearman")), method="average") +hmap_order <- data.frame(Betty_mean_N_and_I_FC_mat[rev(hr$labels[hr$order]), hc$labels[hc$order]]) +write.csv(hmap_order ,"Betty_F5A_heatmap.csv") +