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SUMMARY
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunother-
apies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying
TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring
low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies
(<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising
solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated
peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the
rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an over-
view of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet
microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based im-
munopeptidomics and single-cell proteomics.
INTRODUCTION

The field of tumor-specific antigen (TSA) discovery has grown

rapidly in recent years, driven by the increasing interest in cancer

immunotherapy as a treatment approach.1–4 TSAs presented at

the cell surface by major histocompatibility complex (MHC) (hu-

man leukocyte antigen [HLA] in human) class I or class II mole-

cules are unique to an individual’s tumor and are not found in

healthy cells, making them ideal targets for cancer vaccines

and immune-based therapies. These therapies aim to stimulate

the patient’s immune system to recognize and attack the tumor

cells, leading to improved clinical outcomes and reduced side ef-

fects compared with traditional treatments such as chemo-

therapy and radiation therapy.5–7

With the recent advances in cancer immunotherapies such as

checkpoint inhibitors and chimeric antigen receptor (CAR) T cell

therapy, direct identification of actionable TSAs has become a

critical step in the development of new treatments.8,9 In this re-

gard, mass spectrometry (MS)-based immunopeptidomics is a

promising approach because it can directly determine the amino

acid sequence of TSAs as physical molecules.10–12 In its

simplest form, immunopeptidomics involves the isolation of
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HLA class I- and class II-associated peptides by immunoaffinity

capture, peptide elution, and subsequent sequence identifica-

tion by MS following database searches.13–15 Once TSAs have

been identified, their immunogenicity and anti-tumor efficacy

can be evaluated in pre-clinical and clinical studies.16,17 Howev-

er, one major challenge in using this method is the sample prep-

aration, i.e., the isolation of HLA-associated peptides with low

absolute quantities, as it requires relatively large sample vol-

umes, making it difficult to apply to minute amounts of clinically

relevant biospecimens that are widely accessible in cohort

studies and biobanks.18,19 Thus, the applicability of immunopep-

tidomics in basic and translational research remains relatively

limited, and innovative methodologies are urgently needed to

unlock its full potential.

Recently, microfluidics has been proposed as a method to

improve the isolation of HLA proteins and their peptide ligands

for tumor antigen discovery.20,21 Microfluidics is a field of study

that deals with fluid flow in structures (typically formed by micro-

fabrication) with at least one dimension in the range of microns

(10-6 m).22–25 Microfluidic technologies are rapidly evolving and

currently findwide applications in biomedical research, including

for single-cell omics analyses.26–32 New microfluidic techniques
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have also gained significant interest inMS and proteomics due to

the capability of those techniques to isolate and identify proteins

at the single-cell level. Inspired by those recent advances in the

field of proteomics, we aim to outline below some of the chal-

lenges facing sample preparation in immunopeptidomics work-

flows and explore how microfluidics can offer innovative solu-

tions to drive progress forward.

CHALLENGES IN IMMUNOPEPTIDOMICS

We highlight below the reasons why immunopeptidomics still re-

quires relatively high sample inputs and explore potential expla-

nations for variable and suboptimal peptide recovery across

research groups in immunopeptidomics. This will facilitate the

development of appropriate methodologies to address these

challenges.

Why immunopeptidomics still requires relatively high
sample inputs?
The abundance ofMHC-associated peptides is generally

low

The abundance of cell surface MHC molecules can vary greatly

between cell types and individuals, i.e., from 0 to >3,000,000

MHC molecules per cell (Table 1).14,33–37 Such variations affect

the absolute quantity of peptides that are presented by MHC

molecules. In general, the abundance of peptides presented

by MHC molecules is low, typically ranging from �100 to �500

copies per cell, although extreme cases can go up to over

100,000 copies per cell (Table 2).38–41 Given this high heteroge-

neity, estimating the theoretical number of peptides that can be

obtained from typical biopsies is a challenging task, as it de-

pends on the expression level of MHC molecules and the distri-

bution of peptide abundances in the immunopeptidome of each

cell type present.

Experimental evidence has demonstrated the ability of MHC

molecules to present highly immunogenic peptides, even at

extremely low abundances, as low as a single copy per cell.43

To our knowledge, the detection limit for MHC-peptides using

MS is typically in the attomoles range (50–500 amol), and

assuming 100% purification efficiency, detecting a single mole-

cule of a specific target peptide would require 30–3003 106 cells

depending on the peptide sequence. This means that a typical

tissue biopsy containing 1–10 3 106 cells (1 mg) would not be

adequate for detecting such target peptides using currently avail-

ableMSmethodologies.44–46Moreover, if thepeptidepurification

efficiency is reduced to 50%, the required cell number would

double to 60–600 3 106 cells. Therefore, relatively large number

of cells (50–100 3 106 cells)47,48 or tissue volume (5–200 mg tis-

sue)15 are generally necessary to obtain sufficient amounts of

peptides for immunopeptidomic analysis, depending on the cell

type, MHC-peptide isolation protocol, and MS sensitivity. For

the detection of rarerMHC-peptides, suchaspost-translationally

modified (PTM) MHC-peptides, as much as 13 109 cells can be

required.49 This requirement is a major bottleneck. To overcome

this limitation, several solutions have been proposed such as the

expansion of tumor volumes in immunocompromised mice (pa-

tient-derived xenograft)46,50 or the amplification of single-cell pa-

tientmaterial into clonal organoids.51,52However, these solutions
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are not very efficient for rapid and systematic profiling of tumor

immunopeptidomes in the clinic as it can be slow, expensive,

impractical, and resource intensive and could potentially intro-

duce experimental bias and confounders.

Peptide losses during the immunoaffinity purification

procedure

Another reason that has recently become clear for the use of

large sample inputs in immunopeptidomics is the relatively low

yield of the immunoaffinity purification (IP) procedure for the

isolation of MHC-peptides. This low yield, measured using spe-

cific reagents, reduces the sensitivity of downstream MS anal-

ysis, making high sample inputs necessary. The reagents used

to accurately measure peptide losses during the IP procedure

include heavy and medium synthetic stable-isotope-labeled

HLA peptide standards (MHC class I isotopolog calibrants) and

were recently described in several studies by the groups of van

Veelen39,53 and White.38,42,54,55 Indeed, Hassan et al. were the

first to apply these reagents by refolding recombinant HLA-

A*02:01 a chains and b2M with heavy peptides to generate

heavy pHLAs (hpHLAs), which were then added to the cell lysate

prior to IP as an embedded reference.39 The medium-labeled

peptide was added exogenously to the sample prior to liquid

chromatography with tandem MS (LC-MS/MS) analysis at the

same concentration. Targeted MS analysis using parallel reac-

tion monitoring (PRM) was then used to quantify pHLA losses

by determining the ratio of the heavy to medium peptide signal.

The results revealed striking losses in the IP and sample pro-

cessing stages, ranging from 98.5% to 99.1% for the

ALAPAPAEV peptide and from 97.2% to 99.5% for the

VLFRGGPRGSLAVA peptide (average value shown in Fig-

ure 1A).39 In an additional study, the same group further investi-

gated the yield of the IP procedure using six different peptides (3

wild-type and 3 mutated peptides) in four different lymphoblas-

toid cell lines (LCLs) for a total of 24 measurements.53 Consis-

tently, their results showed substantial peptide losses between

85% and 98% within an average loss of 92% ± 4% (Figure 1A).

Notably, their data indicated that even a single amino acid point

mutation can significantly impact the yield of a peptide. This

observation is evident by the differences observed in each pair

of mutated and wild-type peptides across the four LCL condi-

tions tested (Figure 1B). Then, the group of Forest M. White

applied a similar approach to estimate peptide losses using 14

different hpHLA-A*02:01.38,42 Their data showed that peptide

losses ranged from 17.5% to 92% during the IP, with an average

peptide loss of 56% ± 23% (Figure 1A). They also noted that

there was no clear correlation between sample losses and

peptide hydrophobicity or predicted peptide binding affinity to

HLA-A*02:01.42 Notably, the White and van Veelen laboratories

used very different IP conditions, which are discussed below.

Thus, the data currently available in the literature suggest that

sample losses can be relatively substantial and vary depending

on the peptide and experimental conditions.

Reasons for variable and suboptimal peptide recovery
Delving into the reasons behind such substantial sample losses

and behind variations between laboratories may help us under-

stand how to mitigate losses and improve detection sensitivity

and reproducibility.



Table 1. Absolute quantification of cell surface MHC proteins (copies per cell) by flow cytometry

Species Cell type MHC/HLA

Quantification

method

Number of MHC copies per cell

(number of patients tested) Reference

Human B-ALL cells HLA-A, -B, -C QIFIKIT �550,000 Lanoix et al.33

Human B-LCL cells HLA-A, -B, -C QIFIKIT �3,400,000 Lanoix et al.33

Human JY cells HLA-A, -B, -C QIFIKIT �723,000 Sirois et al.14

Human normal B cells HLA-A, -B, -C QIFIKIT �32,000–256,500 (7) Kowalewski et al.34

Human normal B cells HLA-DR QIFIKIT �19,500–79,500 (7) Kowalewski et al.34

Human CLL cells HLA-A, -B, -C QIFIKIT �42,500–288,500 (7) Kowalewski et al.34

Human CLL cells HLA-DR QIFIKIT �29,000–100,500 (7) Kowalewski et al.34

Human normal monocytes HLA-A, -B, -C QIFIKIT �75,300–239,500 (5) Berlin et al.35

Human normal monocytes HLA-DR QIFIKIT 0–3,250 (5) Berlin et al.35

Human AML blasts HLA-A, -B, -C QIFIKIT �45,000–262,000 (5) Berlin et al.35

Human AML blasts HLA-DR QIFIKIT �1,500–45,000 (5) Berlin et al.35

Human ovarian tumor cells HLA-A, -B, -C QIFIKIT �10,000–170,000 (11) Schuster et al.36

Human ovarian tumor cells HLA-DR QIFIKIT �20,000–300,000 (11) Schuster et al.36

Human endothelial cells HLA-A, -B, -C QIFIKIT �30,000–150,000 (11) Schuster et al.36

Human endothelial cells HLA-DR QIFIKIT �10,000–30,000 (11) Schuster et al.36

Human leukocytes HLA-A, -B, -C QIFIKIT �5,000–110,000 (11) Schuster et al.36

Human leukocytes HLA-DR QIFIKIT 0–45,000 (11) Schuster et al.36

Mouse B16F10 cells H2-Db QIFIKIT �2,700 Schuster et al.37

Mouse B16F10 cells + IFNg H2-Db QIFIKIT �288,000 Schuster et al.37

Mouse B16F10 cells H2-Kb QIFIKIT �500 Schuster et al.37

Mouse B16F10 cells + IFNg H2-Kb QIFIKIT �90,000 Schuster et al.37

Mouse LLC1 cells H2-Db QIFIKIT �14,500 Schuster et al.37

Mouse LLC1 cells H2-Kb QIFIKIT �2,700 Schuster et al.37

Mouse GL261 cells H2-Db QIFIKIT �67,000 Schuster et al.37

Mouse GL261 cells H2-Kb QIFIKIT �28,700 Schuster et al.37

Mouse EL4 cells H2-Db QIFIKIT �500,000 Schuster et al.37

Mouse EL4 cells H2-Kb QIFIKIT �347,000 Schuster et al.37

QIFIKIT (quantitative analysis kit) was used to determine the number of MHC copies per cell for each cell type. B-ALL, B-LCL, and JY are EBV-trans-

formed B cell lines. For primary normal or tumor cells obtained from patients, the number of patients for which MHC abundance was measured is

mentioned in parentheses; the numbers indicate the range of MHC abundances measured across all patients for each cell type. Absolute abundance

of cell surface MHC class I proteins was also measured in several mouse cell lines: B16F10 (melanoma cell line); LLC1 (Lewis lung carcinoma cell line);

GL261 (glioblastoma cell line); and EL4 (lymphoma cell line). Original reference is indicated.
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Researchers utilize diverse IP conditions and

purification methods

Many protocols have been optimized over the last 5 years for the

isolation of MHC-associated peptides for their subsequent anal-

ysis by MS.14,15,33,56–61 Various IP conditions and purification

methods are employed in those protocols, which may contribute

to the differences in peptide recovery observed between labora-

tories such as those reported between the White and van Veelen

labs. We highlight those differences below.

Research groups tend to use different ionic, non-ionic. or

zwitterionic non-denaturing detergents for cell lysis and

membrane disruption. Among the most widely used incl-

ude 3-cholamidopropyl dimethylammonio 1-propanesulfonate

(CHAPS), Zwittergent, Triton X-100 (Triton), Nonidet P-40

(NP40), detergent sodium deoxycholate (DOC), and IGEPAL

CA-630 (Igepal).62 Those detergent are all compatible with im-

munopeptidomics workflows and do not create interference

with peptide chromatography and detection. CHAPS is widely
used and was shown to provide the highest peptide recovery

when compared with Igepal, Triton, and DOC.63 On the other

hand, Igepal was identified as a suboptimal detergent because

it was shown to partially disrupt membranes, leading to the

isolation of contaminant peptides during the IP process.64

The selection of the appropriate antibody is an important

consideration that can influence the success of the experiment.

The W6/32 antibody is established and widely used for the isola-

tion of HLA-ABC-associated peptides. Other antibodies are less

established and may lead to variations. For example, although

both L243 and LB3.1 antibodies affinity capture HLA-DR,

LB3.1 may yield at least double the number of MHC-peptides.15

Additionally, the amount of antibody used is a crucial factor that

can vary among research groups and may impact the effective-

ness of the IP. In this regard, the selected antibody needs to be in

high excess for MHC depletion, as it has been observed that

MHC is generally not depleted in the sample if low amounts

are used, leading to low peptide recovery. To avoid this issue,
Cell Reports Methods 3, 100511, June 26, 2023 3



Table 2. Absolute quantification of MHC-associated peptides (copies per cell) by targeted MS

Peptide MHC/HLA Cell type Targeted MS

Standard for

quantitation (accuracy)

Number of peptide

copies per cell Reference

SLQDLIEKV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �50 Stopfer et al.38

TLAEIAKVEL A*02:01 SK-MEL-5 cells PRM hipMHC(+) �50 Stopfer et al.38

GQVEIVTKV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �20 Stopfer et al.38

KQVSDLISV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �100 Stopfer et al.38

RTLAEIAKV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �125 Stopfer et al.38

GLFDQHFRL A*02:01 SK-MEL-5 cells PRM hipMHC(+) �150 Stopfer et al.38

VLHDRIVSV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �400 Stopfer et al.38

GVYDGEEHSV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �500 Stopfer et al.38

KLADQYPHL A*02:01 SK-MEL-5 cells PRM hipMHC(+) �200 Stopfer et al.38

AMLGTHTMEV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �150 Stopfer et al.38

SLYSYFQKV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �250 Stopfer et al.38

KLDVGNAEV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �800 Stopfer et al.38

SLADTNSLAVV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �1,100 Stopfer et al.38

SLDDYNHLV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �1,700 Stopfer et al.38

ALFDGDPHL A*02:01 SK-MEL-5 cells PRM hipMHC(+) �2,000 Stopfer et al.38

ALDGGNKHFL A*02:01 SK-MEL-5 cells PRM hipMHC(+) �10,000 Stopfer et al.38

HVDSTLLQV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �3,500 Stopfer et al.38

RLLGTEFQV A*02:01 SK-MEL-5 cells PRM hipMHC(+) �40,000 Stopfer et al.38

RLLGTEFQV A*02:01 SK-MEL-5 cells +MEKi PRM hipMHC(+) �144,000 Stopfer et al.38

ALAPAPAEV A*02:01 JY cells PRM hipMHC(+) �390 Hassan et al.39

SLAADIPRL A*02:01 JY cells PRM hipMHC(+) �460 Hassan et al.39

VNYLHRNV H2-Kb EL4 cells PRM SIL(�) �910 Laumont et al.40

IILEFHSL H2-Kb EL4 cells PRM SIL(�) �5,000 Laumont et al.40

VTPVYQHL H2-Kb EL4 cells PRM SIL(�) �50 Laumont et al.40

TVPLNHNTL H2-Db EL4 cells PRM SIL(�) �18 Laumont et al.40

EEIPVSSHYF B*44:03 B-LCL cells FAIMS-MS2 SIL(�) �115 Pfammatter et al.41

AEIQEKKEI B*44:03 B-LCL cells FAIMS-MS2 SIL(�) �195 Pfammatter et al.41

AEIEQKIKEY B*44:03 B-LCL cells FAIMS-MS2 SIL(�) �295 Pfammatter et al.41

EEIPVSSHY B*44:03 B-LCL cells FAIMS-MS2 SIL(�) �257 Pfammatter et al.41

SEIEQKIKEY B*44:03 B-LCL cells FAIMS-MS2 SIL(�) �182 Pfammatter et al.41

QELIGKKEY B*44:03 B-LCL cells FAIMS-MS2 SIL(�) �100 Pfammatter et al.41

VEEADGNKQW B*44:03 B-LCL cells FAIMS-MS2 SIL(�) �215 Pfammatter et al.41

SEESAVPKRSW B*44:03 B-LCL cells FAIMS-MS2 SIL(�) �317 Pfammatter et al.41

Parallel reaction monitoring (PRM) and high-field asymmetric waveform ion mobility spectrometry (FAIMS)-MS2 were used for quantitative measure-

ments of specific MHC I-associated peptides in different human and mouse cell lines: SK-MEL-5 (human melanoma cell line), JY and B-LCL (human

EBV-transformed B cells), and EL4 (mouse lymphoma). Two formats of standards were used for absolute quantification: (1) heavy isotopically labeled

peptide-MHCs (hipMHCs), which are more accurate (+), as they take into account peptide losses during immunoprecipitation, and (2) synthetic isoto-

pically labeled (SIL) peptides, which are less accurate (�), as they do not take into account peptide losses during immunoprecipitation, thereby likely

underestimating the number of peptide copies per cell (see Stopfer et al. for details42). Original reference is indicated. MEKi, MEK inhibitor binimetinib.
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a ratio of 10–50 mg antibody per 1 3 106 cells (1–5 mg antibody

per 1 3 108 cells) is generally applied based on recent studies.

Alternatively, the Strep-tag technology has been recently em-

ployed to study the mouse immunopeptidome of specific cell

populations in vivo.65 The Strep-tag technology showed prom-

ising results in terms of sensitivity for the isolation of MHC-asso-

ciated peptides and could potentially replace antibodies in engi-

neered Strep-tag-MHCmousemodels given their high efficiency

for protein purification by affinity capture.66 A direct comparison

between antibody and Strep-tag technology remains to be done.
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Researchers also use different peptide elution and purification

protocols. Immunocaptured MHC-associated peptides have to

be eluted from Sepharose or magnetic beads. Elution is per-

formed using 10% acetic acid60 or 1% TFA.14 Once MHC-pep-

tide complexes have been eluted, an additional purification

step is necessary to separate peptides from large proteins (anti-

body, b2-microglobulin, and MHC heavy chains), which would

otherwise interfere with peptide chromatography and detection.

Most commonly used separation techniques include reversed-

phase high-performance LC (RP-HPLC),15 C18-solid phase



A B

Figure 1. Peptide losses during the IP procedure

(A) List of synthetic stable-isotope-labeled HLA peptide standards (MHC class I isotopolog calibrants) that were used in three independent immunopeptidomics

studies. All the peptides bind HLA-A*02:01. The proportion of HLA-A*02:01 peptides that was lost during the traditional IP method is indicated for each peptide.

The reference for each peptide is also indicated.

(B) Proportion of peptide lost during the traditional IP method for 3 wild-type versus mutated peptides. Mutated amino acid is in red. Peptide loss was quantified

for each peptide in four different lymphoblastoid cell lines: JY, HCC, A2P, and BDV.
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extraction (C18-SPE),14,60 and 5–10 kDa cutoff filters,54,56,67 the

latter two being the simplest and most widely used methods.

Nevertheless, RP-HPLC was reported to provide the best pep-

tide recovery when compared with C18-SPE and 5 kDa cut-off

filtering.63

Regarding the yield evaluation experiments described above

from the White and van Veelen laboratories, very different purifi-

cation strategies were used. In the van Veelen laboratory, 2 3

109 cells were lysed using Zwittergent and high amounts of anti-

body (17.5 mg antibody/sample) and large volumes of protein

beads (7 mL) were used for IP. In the White laboratory, 200 times

fewer cells (1 3 107 cells) were lysed using CHAPS, and 0.2 mg

antibody and 20 mL bead slurry (Fastflow protein A) were used for

IP. Both groups elutedMHC-peptide complexes using 10%ace-

tic acid followed by a 10 kDa cutoff filter for peptide separation.

Notably, the antibody/cell ratio is >2-fold higher in the White lab-

oratory, with 20 mg antibody/13 106 cells comparedwith 8.75 mg

antibody (Ab)/1 3 106 cells in the van Veelen laboratory, which

may have affected MHC depletion differently and could explain,

among other factors, variations in peptide yields between the

two groups.

Peptide adsorption on surfaces

It is known that sample losses in proteomics and peptidomics

are caused by protein and peptide adsorption on surfaces

used during the experiment, as well as the transfer between
different containers. One of the main reasons for polypeptide

adsorption is the ‘‘hydrophobic effect,’’ where strong interac-

tions occur between the hydrophobic amino acid components

of polypeptides and the hydrophobic surface of standard poly-

meric lab materials such as tubes and tips.68 Additionally, other

adsorption mechanisms can also come into play, depending on

the chemical characteristics of the polypeptides, such as their

polarity, structure, charge, and size, which can enhance their af-

finity to polymeric surfaces andmake the cause of sample losses

more complex and untraceable.69,70 As the concentration of

these molecules decreases, the loss of polypeptides in solution

becomesmore severe. Below a critical concentration, most pep-

tides can be lost to adsorption, leaving nothing in solution to

detect or analyze.71–75 The protocol used to purify MHC-associ-

ated peptides, which involves multiple steps with plastic sur-

faces,14,15 can exacerbate peptide adsorption, resulting in sub-

stantial losses of low-abundance MHC-associated peptides,

including potentially valuable TSAs.Moreover, the use of organic

solvent with plastic tubes can solubilize incomplete polymeric

products that will contaminate peptide extracts potentially lead-

ing to undesired MS signal suppression effects.

Together, substantial and variable loss of peptides can be

observed in immunopeptidomics, which can be attributed to a

combination of factors, including the use of very different purifi-

cation strategies as well as peptide adsorption on surfaces. New
Cell Reports Methods 3, 100511, June 26, 2023 5
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strategies are therefore needed to facilitate standardization of

MHC-peptide isolation procedures from low-input samples

while increasing peptide yield and reproducibly.

RECENT ADVANCES IN MICROFLUIDICS-BASED
IMMUNOPEPTIDOMICS

Microfluidic devices can effectively reduce peptide adsorption

by limiting the amount of peptides that can adsorb onto surfaces

through their small channel dimensions and reduced surface

area, as shown by numerous studies in MS-based prote-

omics.76–91 Microfluidic devices also operate with small sample

volumes, which help reduce losses imparted to large surface

contact areas. Moreover, the automatable characteristics of

microfluidics can minimize human error and increase reproduc-

ibility of purification processes from ultra-low sample inputs.

Furthermore, microfluidics has proven effective in isolating pep-

tides92,93 and proteins by IP using antibodies,81,94 suggesting its

potential for isolating HLA-peptide complexes and eluted pep-

tides using similar methods. Thus, microfluidics is, in principle,

a promising solution to isolate HLA-associated peptides more

efficiently. If tested and validated, microfluidics could be applied

to profile tumor immunopeptidomes from small amounts of

clinical biospecimens without the need to expand them in pa-

tient-derived xenograft (PDX) models or organoid culture. More-

over, the development of robust and automated microfluidics

technologies in immunopeptidomics could provide an opportu-

nity to improve the throughput, quantitative accuracy, and

accessibility of MHC-peptide measurements by MS.

Currently, only two microfluidics-based methods have been

reported for isolating and analyzing HLAI-associated peptides

using MS: PeptiCHIP20 and CHIP-IP.21 These methods were

developed independently by two different research groups and

both utilize microchips composed of thousands of micropillars,

which are commonly used in microfluidic devices to improve

target capturing efficiency.95,96

The PeptiCHIP study
In the first CHIP study, Vincenzo Cerullo and his team proposed

a method for achieving IP of HLA-peptide complexes using a

single 3-cm-long micropillar chip.20 Note that the chip’s phys-

ical design was not primarily tailored for the immunopeptidome

enrichment workflow but rather for general proteomics applica-

tions, as mentioned.96 Specifically, the chip was comprised of

14,400 micropillars and was fabricated using a thiol-ene poly-

mer and a UV-replica molding technique, resulting in a low-

cost microfabrication process (Figure 2A). The chip was opti-

mized with a layer height of 200 mm, a micropillar diameter of

50 mm, and a density of 100 mm interpillar distance, which al-

lows for proper filling via capillary forces and minimizes the

risk of blockages caused by bioaggregates and other particu-

late impurities.

For performing IP, the micropillars were functionalized with

streptavidin-biotin and then coated with biotinylated pan-HLA-

ABC antibody (W6/32 antibody) (Figure 2A). The PeptiCHIP

was then used to trap HLA-I complexes by loading cell lysate

directly onto it. Following washing, the complexes were removed

by acid elution, and the process continued off chip with standard
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immunopeptidomics procedures, including purification of eluted

HLA peptides with SepPac-C18 in acetonitrile.

While acknowledging the significance of this study, it is impor-

tant to note several limitations that were identified. First, the

strategy of using biotinylated antibodies contrasts with

commonly used methods including association with protein

A/G or crosslinking. Although a direct comparison was not per-

formed by the authors, it is reasonable to suspect that antibody

specificity and/or sensitivity could decrease, negating any

benefits of the microfluidics platform. Second, according to the

authors, their method enabled lower antibody consumption.

For the in-vial-IP experiment, 10 mg antibody was used for

1 3 109 cells, whereas for the in-PeptiCHIP experiment, they

used 45 mg antibody for 4.5 3 106 cells. While it is correct that

the PeptiCHIP required less antibody, the ratio of antibody per

cell remained constant at 10 mg per 1 3 106 cells. Third, the

use of the SepPac-C18 cartridge may appear counterproductive

to the goal of achieving greater sensitivity since the smallest car-

tridge available is larger than what is typically used for microflui-

dics-based sample preparation. This could potentially explain

why the number of peptides identified using this method does

not appear significantly different from those identified using con-

ventional immunopeptidomics sample preparation techniques.

For instance, from 1 3 106 cells, 1,804 peptides were identified,

of which 67% were predicted to be good HLA binders (Table 3).

Fourthly, purification of HLAI-associated peptides using Pep-

tiCHIP led to atypical contamination of long peptides (above

10-mer) and a low HLA-I binder content. Finally, the PeptiCHIP

workflow exhibited poor system integration, as the fluidic control

was not adequately demonstrated.

Despite the above limitations, the PeptiCHIP was effective in

isolating and identifying HLA-associated peptides from patient-

derived material such as ovarian tumors, bladder tumors, and

clear cell renal cell carcinoma (ccRCC) (Table 3). Some of

those peptides were shown to elicit a CD8+ T cell response.

Thus, the PeptiCHIP method has obvious limitations and needs

further optimization but represents a stepping stone toward

the creation of more advanced microfluidics-based techniques

in immunopeptidomics.

The CHIP-IP study
The CHIP-IP platform was specifically designed to fulfill the

unique requirements of the immunopeptidome enrichment

workflow.21 The CHIP-IP boasts a serpentine-curved fluidic

microchannel measuring 50 cm in total length, as illustrated in

Figure 2B. The microchannel comprises roughly 250,000 micro-

pillars, each with a side length of 20 mm and a height of 100 mm.

The workflow necessitates a relatively low sample volume

(100 mL) and utilizes an automated fluidic control system, which

integrates C18 cartridges required for sample cleanup via a pro-

grammable switch valve (Figure 2B). This attribute is important in

immunopeptidomics, as it eliminates the need for unnecessary

sample transfers, resulting in enhanced assay sensitivity. More-

over, clamping reinforcements were incorporated into the CHIP-

IP to bolster its mechanical robustness, preventing any leakage

or sample loss.

Using the RA957 B cell line, the authors conducted a direct

comparison of peptide recovery between the CHIP-IP and the



A

B

C D

Figure 2. Microfluidics in immunopeptidomics and single-cell proteomics

(A) PeptiCHIP is a microchip pillar array used as an immunopurification platform for immunopeptidomic applications. The PeptiCHIP is 30 mm long, 4 mm wide,

and composed of 14,400micropillars. A schematic overview describing the PeptiCHIPmethodology is illustrated. Adapted from Feola et al., 2021.20 Copyrightª
2021 the authors (https://creativecommons.org/licenses/by/4.0/). Published by American Chemical Society. See original publication for details.20

(B)CHIP-IP isa valve-basedmicrochippillar array for immunopeptidomicsapplications. TheC18cartridgeand theCHIP-IPdevicewereconnectedviaanautomated

6-port switch valve.Theswitchvalvecouldbeprogrammed to rotate todifferent positions, allowing for twooperationalmodes (left and right). In thedecoupledmode,

theC18 cartridgewas individually pre-conditionedwhile the IPwas ongoing (left). In the coupledmode, the eluted peptides floweddirectly into the conditionedC18

cartridge (right). Adapted from Li et al., 2023.21 Copyrightª 2023 the authors (https://creativecommons.org/licenses/by/4.0/). See original publication for details.21

(C) Valve-basedmicrofluidics for single-cell proteomics: (left) a schematic of the overall SciProChip layout. The control layer is shown in pink, while the flow layer is

shown in black and blue. Note that SciProChip contains 20 operational units. (Right) Operational procedures of iProChip for streamlined sample preparation,

including (1) cell trapping, imaging, and counting, (2) cell lysis, (3) protein digestion, (4) desalting, and (5) peptide collection. Adapted from Gebreyesus et al.,

2022.90 Copyright ª 2022 the authors (https://creativecommons.org/licenses/by/4.0/). See original publication for details.90

(D) Nanodroplet-based microfluidics: schematic drawing and photograph showing the nanoPOTS chip for conducting nanoproteomics studies from low cell

numbers. Reprinted from Zhu et al., 2018.86 Copyright ª 2018 the authors (https://creativecommons.org/licenses/by/4.0/). See original publication for details.86
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traditional in-vial-IP methods. An extensive RA957-specific

spectral library was built in Spectronaut, and immunopeptido-

mics data were acquired in data-independent acquisition (DIA)

mode to boost sensitivity, as described.97 CHIP-IP resulted

in approximately twice the number of identified peptides

compared with the in-vial-IP method when only 1 3 106 cells

were used (Table 3). Specifically, �10,000 and �5,100 HLAI-

associated peptides were identified using CHIP-IP and vial-IP,

respectively (Table 3), thereby indicating that sample preparation

was a bottleneck for achieving high peptide recovery when

working with low sample input. Notably, >4,000 and >7,000

HLAI-associated peptides were identified from 2 3 105 RA957

cells and 5 mg melanoma tissue, respectively. To fully assess

the capabilities of CHIP-IP, it will be important to conduct tests

on a broader range of cell and tissue types encompassing vary-

ing levels of HLA abundance. This comprehensive evaluation will

provide valuable insights into the versatility and effectiveness of

the CHIP-IP method across different biological contexts.

Peptide recovery is affected by IP conditions, as described

above. In the CHIP-IP method, micropillars were coated with

protein A before loading them with the W6/32 antibodies, which

were subsequently crosslinked. The CHIP-IP was loaded with

300 mg antibody, irrespective of the starting amount of cells

used for IP. For example, 300 mg antibody per 103 106 cells rep-

resents a ratio of 30 mg antibody per 1 3 106 cells, which fall

within the conventional 10–50 mg antibody per 1 3 106 cells

generally used. However, 300 mg antibody per 2 3 105 cells re-

sults in an excessively high antibody-per-cell ratio, 50 times

greater than the conventional ratio. This ratio likely ensures com-

plete capturing of HLAI-peptide complexes in the sample and

potentially enhances peptide recovery from low sample inputs.

In the future, it will be important to use heavy isotopically labeled

peptide-MHC (hipMHC) standards (as shown in Table 2) for ac-

curate yieldmeasurements while developing and testing newmi-

crofluidic devices and IP conditions.

Although CHIP-IP has shown promising results, its accessi-

bility needs improvement due to the complexity of its tubing

and pump systems, as well as the requirement for expertise in

microengineering and cleanroom operation. Nonetheless, the

technology represents an important milestone in the field, as

it lays the groundwork for the automation and commercializa-

tion of sensitive devices that can facilitate robust clinical

immunopeptidomics.

Can antibody-free CHIPmethods be a better solution for
quantitative immunopeptidomics?
Robust and accurate quantification of therapeutically relevant

cell surface TSAs from low sample inputs could be pivotal in

defining the threshold of positive responsiveness to immuno-

therapies, such as antibody-drug conjugates, cancer vaccines,

bispecific T cell engagers, or other T cell-based therapies.98

Therefore, the development of simple antibody-free methods

for eluting cell surface MHC-peptides and their integration into

microfluidics could significantly advance our understanding of

immunopeptidomes and their implications for disease treatment.

Mild acid elution (MAE) is a straightforward antibody-free

method that offers an alternative to IP for eluting cell surface

MHC class I-associated peptides from intact cells.33,56 Although
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MAE has been successfully applied to resuspended cells,99–104

its use for solid tissues was deemed impractical due to the

high proportion of contaminant peptides, and the method is no

longer utilized in the field. However, with the advent of innovative

microfluidics technologies and the ability to work with smaller

numbers of resuspended cells in a CHIP, MAE has the potential

to be revisited as a valuable method for quantitative measure-

ments of MHC-associated peptides using targeted MS. As the

peptides to be targeted by MS are already known, they do not

need to be in a highly pureMHC-peptide pool for effective detec-

tion and quantification.

Moreover, while IP isolates both intracellular and cell surface

MHC-peptides, MAE isolates peptides from the cell surface,

which is the most immunologically relevant peptide pool for

T cells. DIA-MS, together with the use of pre-established

MHC-peptide spectral libraries, could be used to perform high-

throughput targeting of cell surface MHC-peptides for relative

quantification of immunopeptidomes across different condi-

tions.97,105–107 Additionally, PRM could be used with hipMHC

to provide absolute quantification of a subset of clinically rele-

vant MHC-peptides. This pre-defined set of peptides may

include PTM MHC-peptides in autoimmunity108–110 or TSA in

cancer,111,112 and applying a relatively simpler antibody-free

CHIP method to elute them could represent a significant advan-

tage to measure rapidly, accurately, and reproducibly their cell

surface abundance over time in the context of a longitudinal

study, for instance.

Furthermore, the integration of an antibody-free MHC-peptide

elution workflow into a microfluidics device would facilitate its

scalability and accessibility to other laboratories. Therefore, the

development of such methods, while not perfect at providing

pure MHC-peptide pools, may be of great complementary value

for the field. The emerging field of single-cell proteomics could

provide insights to accelerate progress toward this direction.113

INSIGHTS FROM SINGLE-CELL PROTEOMICS

Advanced proteomics techniques have been developed to

enable the analysis of small sample sizes (<1,000 cells) using

MS, greatly expanding the scope of proteomic analysis.114–118

Recently, new valve-based continuous flow microfluidics,79,90,91

nanodroplet microfluidics,86,88,89 and digital microfluidics80,82,83

approaches were reported to enhance proteome profiling

sensitivity, even froma single cell (Table 3). The following is a brief

overviewof thoseapproaches,whichcanprovidevaluable insight

for further microfluidics development in immunopeptidomics.

Valve-based continuous flow microfluidics
Valve-based continuous flow microfluidics is a type of microflui-

dics technology that utilizes tiny valves and pumps to control the

flow of liquids through microscale channels (Figure 2C). This

approach allows for precise control over the flow rate and direc-

tion of fluids, which can be adjusted in real time.119 Several

valve-based microfluidics systems have been developed for

proteomics analysis over the last years.79,90,91 Recently, two

advanced valved-based microfluidic devices, the iProChip and

the SciProChip, were developed for the analysis of <100 cells

and for the analysis of single cells, respectively.90 A great feature



Table 3. Performance and comparison of multiple microfluidic technologies for the isolation and analysis of HLA-bound peptides

(immunopeptidomics) or proteins (proteomics) by MS

Immunopeptidomics

Cell type No. cells No. peptides detected HLA-I binders Microfluidics Reference

JY (B cell line) 10 3 106 2,100

1,134

82%

82%

PeptiCHIP

Vial-IP

Feola et al.20

JY (B cell line) 1 3 106 1,804

387

67%

41%

PeptiCHIP

Vial-IP

Feola et al.20

Ovarian tumor 10 mg

60mg

172

1,128

ND

ND

PeptiCHIP

PeptiCHIP

Feola et al.20

Bladder cancer (patient organoid) 6 3 106 2,089 ND PeptiCHIP Feola et al.20

ccRCC (patient organoid) 6 3 106 576 ND PeptiCHIP Feola et al.20

RA957 (B cell line) 10 3 106

2 3 105
15,000

4,000

>90%

>85%

CHIP-IP

CHIP-IP

Li et al.21

RA957 (B cell line) 1 3 106 10,000

5,100

>90%

>90%

CHIP-IP

Vial-IP

Li et al.21

Melanoma tumor 5 mg

40 mg

7,149

13,724

>95%

>95%

CHIP-IP

CHIP-IP

Li et al.21

Proteomics

Cell type No. cells No. proteins detected Microfluidics Reference

293T (human embryonic kidney cells) 4

13

68

119

913

1,563

2,271

2,770

valve-based continuous flow (Online

Rare Cell Separation [ORCS] proteomics)

Wang et al.91

MCF7 (breast epithelial cells) 61 2,000 valve-based continuous flow

(ORCS proteomics)

Wang et al.91

Circulating tumor cells from patients 5–7 973–1,135 valve-based continuous flow

(ORCS proteomics)

Wang et al.91

HeLa (human epithelial cells) 10–141

10–140

3,092–3,460

313–2,048

droplet microfluidics (NanoPots)

Vials

Zhu et al.86

HeLa (human epithelial cells) 21–93 1,763–2,260 droplet microfluidics (mPots) Xu et al.88

Mouse liver tissue 10–160 1,275–2,077 droplet microfluidics (mPots) Xu et al.88

C. elegans 959 4,698

4,442

digital microfluidics (DropBot)

Vials

Steinbach et al.82

PC-9 (lung adenocarcinoma cells) 5–106 1,638–4,722 valve-based continuous flow (iProChip) Gebreyesus et al.90

MEC-1 (chronic B cell leukemia) 1–117 455–3,811 valve-based continuous flow (iProChip) Gebreyesus et al.90

PC-9 (lung adenocarcinoma cells) 1 1,500 valve-based continuous flow (SciProChip) Gebreyesus et al.90

U87 (glioblastoma cells) 1 427 digital microfluidics (digital microfluidic

isolation of single cells for omics [DISCO])

Lamanna et al.80

ND, not determined.
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of these devices is the integration of cell capture and counting,

cell lysis, protein digestion, and desalting in an integrated micro-

fluidic workflow, thus reducing sample loss due to multistep

transfer. Specifically, the analytical performance and versatility

of iProCHIP were demonstrated using the PC-9 cell line (human

adenocarcinoma cells) and the MEC-1 cell line (chronic B cell

leukemia cells) (Table 3). The results showed that the dynamic

range of protein abundance spans 5 orders of magnitude, a

wide quantification range (>100-fold) over which accurate

quantification was possible for specific proteins of interest,

good reproducibility (Pearson correlation of 0.88–0.98), and

low missing values (<16%) between runs. Additionally, the

SciProChip was able to detect 1,500 ± 131 protein groups (false
discovery rate [FDR] 1%) using DIA-MS from a single PC-9 cell,

making it one of the most sensitive methods for analyzing the

proteome of a single mammalian cell (Table 3). In immunopepti-

domics, a similar valved-basedmicrofluidic system has not been

developed yet. However, it is anticipated that this system could

be furthermicroengineered and combinedwithmicropillar arrays

coated with pan-HLA antibodies to control the flow and direction

of fluids, resulting in highly specific andmore sensitive identifica-

tion of HLA-associated peptides.

Nanodroplet-based microfluidics
In proteomics, nanodroplet-based microfluidics is a technique

that involves handling extremely small volumes of fluid, typically
Cell Reports Methods 3, 100511, June 26, 2023 9
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Figure 3. All-in-one digital microfluidics (DMF) pipeline for proteomic and immunopeptidomic sample processing and analysis

(A) Cartoon of the DMF device, including a bottom plate and a top plate featuring a sampling microhole (blue).

(B) Photograph of a DMF device interfaced with the open-source DropBot control system and computer running the open-source MicroDrop program.

(C) Schematics of DMF device (side view) illustrating the components of the DMF device, including glass substrates (white), actuation electrodes on the bottom

plate (gray), the dielectric layer on the bottom plate (blue), the hydrophobic layers (yellow), and the indium tin oxide (ITO) counter-electrode on the top plate

(orange). When no electric potential is applied (top), the droplet is immobile. When an electric potential is applied to a particular driving electrode (bottom), the

droplet moves onto the electrode.

(D) This schematic illustrates a DMF device designed to enrich HLAI-peptide complexes. In this hypothetical scenario, magnetic beads cross-linked with theW6/

32 antibody are first introduced into the device and accumulate in a specific location. Next, the sample containing HLAI-peptide complexes is loaded onto the

device, and during the incubation period, the complexes are captured by the W6/32 antibody-coated magnetic beads. This results in the enrichment of HLAI-

peptide complexes, which can then be used for downstream purification steps.

(legend continued on next page)
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on the nanoliter scale within an immiscible medium, such as oil

droplets suspended in water, or vice versa.87 This approach al-

lows for highly efficient and precise processing of trace amounts

of protein samples, enabling in-depth proteome analysis with

minimal sample loss.87 For instance, the group of Ryan T. Kelly

reported a robotically addressed chip-based nanodroplet pro-

cessing platform for enhancing proteomic sample processing

and analysis from a small cell population. The platform, which

is known as nanodroplet processing in one pot for trace samples

(nanoPOTS), reduces total processing volumes from the con-

ventional hundreds of microliters to <200 nL within a single

droplet reactor (Figure 2D).86 When coupled with highly sensitive

MS, nanoPOTS enabled reproducible proteomic measurements

of >3,000 proteins from as few as �10 HeLa cells (Table 3).

NanoPOTS is a powerful platform, but its reliance on a costly,

in-house-built robotic nanopipetting instrument and associated

expertise may limit its dissemination to a broader research com-

munity. To address this limitation, the same group has devel-

oped mPOTS88 and autoPOTS,120 a more accessible version of

the method that uses a commercially available micropipette

and a commercially available robot for liquid handling, respec-

tively. This study shows the capability of mPOTS to accurately

identify a large number of proteins from a small number of cells,

including �1,800 proteins from �25 HeLa cells and �1,200 pro-

teins from �10 mouse liver cells (Table 3).

The potential application of low-microliter droplets in IP of

specific protein complexes is an area that remains largely unex-

plored, but the concept shows great promise. The isolation of

HLA-peptide complexes is one potential application by

combining the advantages of the nanodroplet and surface modi-

fication, and if successful, this approach could be adapted by re-

searchers in the field for ultra-sensitive immunopeptidomics.

Another potential avenue for exploration is adapting the MAE

protocol to the NanoPots system. In this approach, intact living

cells could be attached to the nanowells and treated with MAE,

and eluted peptides from the cell surfaces could then be sepa-

rated and analyzed through an adapted chromatographic sys-

tem. Although thismethodmay be less specific, peptides of inter-

est, pre-determined by DDA-MS, could be targeted by PRM or

DIA-MS for quantitative analysis across different samples.

Furthermore, the recent success of the NanoPots system in

performing imaging MS for mapping the spatial distribution of

proteins across tissue surfaces suggests that it could be adapt-

ed for quantitative measurement of HLA-peptides.121,122 Such

an adaptation could pave the way for the emergence of spatial

immunopeptidomics, which would be particularly informative

for understanding the heterogeneity of immunopeptidomes

in vivo.106,123

Digital microfluidics
Digital microfluidics (DMF) is a technology that enables precise

manipulation of small amounts of liquid using an electrode array

and the principle of electrowetting on dielectric (EWOD)124,125
(E) Photographs of customized DMF-autosampler manifold without (top left) and w

manifold bearing sampling array holes that support the autosampler injector need

in the DMF-HPLC interface.

(A)–(C) and (E) were reproduced from Peng et al., 2023.134 with permission from
(Figures 3A–3C). One of its key advantages is the ability to con-

trol individual droplets of liquid, ranging from several microliters

down to nanoliters, without the need for micropipettes126 (Fig-

ure 3C). The technology ensures precise spatial isolation, pre-

venting any unwanted mixing of fluids. Additionally, DMF is a

pump-free technology that eliminates the need for a complex

tubing network, making it easier to implement and disseminate

across laboratories (Figure 3B). To date, DMF has been widely

used in biomedical research and has demonstrated success in

various applications.127–133 In proteomics, it has been utilized

to analyze proteomes from as few as 100 cells82–84 and even sin-

gle cells using the DMF isolation of single cells for omics (DISCO)

technique80 (Table 3).

DMF has already shown potentials for use in immunopeptido-

mics, having been used for the IP of proteins prior to MS anal-

ysis.81 There is potential for further development of this technol-

ogy for IP of HLA-peptide complexes for the analysis of tumor

immunopeptidomes. For instance, DMF could be tested for the

enrichment of HLA-peptide complexes using antibody-coupled

magnetic beads (Figure 3D). By placing a magnetic control pad

underneath the DMF device, the beads could be easily manipu-

lated. Peptides could also be potentially captured and eluted

within the DMF device using C18-SPE magnetic beads, as

described.135

To further reduce sample loss, Peng et al. recently described a

DMF-powered ‘‘all-in-one pipeline’’ for proteomic sample pro-

cessing and analysis. The pipeline is an end-to-end integrated

process, including an automated interface to LC with MS

(DMF-HPLC-MS interface) (Figure 3E), and may serve as a

base to build on for the proposed immunopeptidomics workflow.

If tested and validated, this method could be widely adopted in

the immunopeptidomics community using, for example, the

open-source DropBot platform136 (Figure 3B), ultimately leading

to its commercialization for robust and sensitive TSA profiling in

the clinical setting.

In addition to advancements in sample preparation, the imple-

mentation of new MS detection techniques, such as timsTOF

SCP, can significantly enhance sensitivity and provide more

comprehensive data for immunopeptidomes.137 Moreover, cut-

ting-edge computational tools based on machine learning,

such as MS2Rescore,138 Prosit,139 and AlphaPeptDeep,140 can

assist with MS/MS prediction and rescoring. These tools are

particularly advantageous for detecting low-input samples and

have the potential to substantially enhance the accuracy of im-

munopeptidome detection and quantification.

Conclusion
The field of immunopeptidomics is faced with a significant

analytical challenge relating to the recovery of HLA-associated

peptides and TSAs during sample preparation, in addition to

its inherent low quantities in biological samples. This is due to

sample losses on container walls and other surfaces during the

multiple pipetting steps required for the IP of HLA-associated
ith (topmiddle) the custom cover. (Top right) Photograph of the top cover of the

le. (Bottom) Photograph and schematic (inset) illustrating the sampling process

the Royal Society of Chemistry. See original publication for details.134
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peptides. Microfluidics has been proposed as a solution to this

issue, as it can reduce fluid contact with surfaces, enable auto-

mation of sample preparation steps, and integrate with MS.

However, to date, only two studies have demonstrated the feasi-

bility of using microfluidics to profile tumor immunopeptidomes.

Therefore, the development and application of microfluidics

technologies in immunopeptidomics is still in its early stages,

thus providing an opportunity for multidisciplinary collaborations

and innovations. Some existing microfluidic application sce-

narios for low-input or single-cell samples, such as on-chip cell

sorting, cell lysis, protein purification, digestion, labeling, and de-

salting, may have the potential to be adapted and used for the

isolation, enrichment, purification, and identification of HLA-

associated peptides. Given the importance of TSAs in cancer

immunotherapy, the development of new microfluidics devices

and technologies in future immunopeptidomics is expected to

become an active area of research in the coming years.
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Schroeder, T.L., Côté, C., Laverdure, J.-P., Lemieux, S., Thibault, P.,

and Perreault, C. (2012). MHC I–associated peptides preferentially derive

from transcripts bearing miRNA response elements. Blood 119, e181–

e191. https://doi.org/10.1182/blood-2012-02-412593.

105. Caron, E., Espona, L., Kowalewski, D.J., Schuster, H., Ternette, N., Alpı́-

zar, A., Schittenhelm, R.B., Ramarathinam, S.H., Lindestam Arlehamn,

C.S., Chiek Koh, C., et al. (2015). An open-source computational and

data resource to analyze digital maps of immunopeptidomes. Elife 4,

e07661. https://doi.org/10.7554/elife.07661.

106. Kraemer, A.I., Chong, C., Huber, F., Pak, H., Stevenson, B.J., M€uller, M.,

Michaux, J., Altimiras, E.R., Rusakiewicz, S., Simó-Riudalbas, L., et al.
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