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Abstract 

The supporting information contains a figure describing the procedure used to test and 

characterize the membrane microfluidic devices prior to permeability testing.  The figure 

is important for demonstrating how devices were tested for potential leakages before use.  

In addition, a derivation of the cylindrical pore flow model for comparing theoretical 

predictions to measured permeability is included for completeness.  We also provide a 

table that summarizes the main parameters used for the reported experiments, along with 

measurements taken of the membrane pores that were used to accurately estimate the 

theoretical permeability of an untreated PET membrane. 



Testing Membrane Permeability and Device Leakage 

 

 
 
 

Figure S-1. (1) Phase contrast image of microchannel intersection. (2) FITC-BSA was 
injected into top channel. (3) FITC-BSA permeated into bottom channel. (4) Flow in 
bottom channel was started. (5) Buffer was allowed to wash the permeated BSA 
downstream of intersection. (6) Buffer then permeated membrane from bottom channel to 
top channel, thus removing the BSA in top channel.  

 



Model for Permeability Measurement by LIF Detection 
 

We provide a detailed derivation of the model used to predict permeability of 

porous layers based on measurements from laser-induced fluorescence detection.  Using 

our approach, we demonstrate that the model predicts permeability through an uncoated 

acellular PET membrane to within 1% of experimental measurements. 

The problem of interest, as illustrated in Figure 1 of the main text and Figure S-1 

below, involves the flux of solute molecules, Jp, through a porous layer from a 

concentrated top microchannel to a lower buffered microchannel initially free of solute 

molecules.  Solute flux through porous materials is governed by: 

 
Jp   fd Ds

c

z
 fcvpc  (S.1) 

where the first and second terms on the right hand side represent the diffusive and 

convective flux components, respectively.  In Eq. (S.1), Ds is diffusivity of the solute; vp 

is the fluid pore velocity; and fd and fc represent the ratios of flux through porous media to 

that of flux in free solution for the diffusive and convective terms.[1]  These two factors 

are specific to transport in porous media, and account for pore geometry, steric and 

viscous effects (described below), and other secondary considerations that affect mass 

transport in porous materials.  In free solution, fd and fc are both unity, and solute flux 

simplifies to Jp  Dsc z  vpc , as expected.  If we assume that the flux Jp is constant 

through the thickness of a (thin) porous layer, Eq. (S.1) can be solved for solute 

concentration in the direction of porous flow (i.e., the z-direction): 

 

 



 

Figure S-2.  Cross-sectional view of crossing microchannels along the length of the 
bottom channel.  A known maximum solute concentration Cmax from the top channel is 
allowed to permeate through the membrane (dark dashed line) to the lower channel where 
it is diluted to the filtrate concentration Cf, and carried downstream with a solute flux of 
Jf.  Mass balances for both fluid and solute are applied to the control volume (dotted 
line). 
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where K1 is a constant of integration.  The relevant boundary conditions for Eq. (S.2) 

include the solute concentration on the retentate side, Cmax at z = 0 (i.e., top side of 

membrane), and the solute concentration on the filtrate side, Cf at z = (i.e., bottom side 

of membrane), where  is the porous layer thickness.  The solution to Eq. (S.2) is 

therefore: 

 
Jp  fc  vpCmax
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where Pep is the pore Peclet number, defined as 
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Eq. (S.3) accounts for both diffusive and convective flux, and the significance of each 

term is dependent on the magnitude of Pep (i.e., convection is dominant for Pep >> 1, and 

diffusion is dominant for Pep << 1).  In all our experiments, 200 < Pep < 500, so Eq. (S.3) 

can be simplified to: 

 Jp  fc  vpCmax  (S.5) 

Using similar arguments, we can derive an equation for solute flux of the filtrate in the 

bottom microchannel, Jf, where the applied bottom channel flow rates lead to channel 

Peclet numbers of Pec > 104.  Thus, we have 

 Jf  vb1Cf  (S.6) 

where vb1 is the average velocity of the filtrate in the bottom microchannel, downstream 

of the membrane.  Solute flux of the filtrate results from the dilution of permeated solute 

molecules by the portion of buffer stream in the bottom microchannel upstream of the 

membrane, which initially contains no solute.   

To relate Cf and Cmax in terms of system parameters and pore velocity, continuity 

of both the fluid and the solute species are considered, resulting in the following mass 

balance equations (see Figure S-2): 

 vb1Ab  vb0Ab  vpAm  (S.7) 

and  

 Jf Ab  JpAm  (S.8) 

 



Am = wtwb is the total membrane area separating top and bottom microchannels, and is the 

product of the microchannel widths at the channel intersection; Ab = wbhb is the bottom 

channel cross-sectional area; and  is the porosity of the membrane.  Combining Eqs. 

(S.5) and (S.8), we obtain an equation for the concentration ratio C : 

 
C 

Cf

Cmax


fcvpAm

vpAm  vb0Ab


fcvswt

vswt  vb0hb

 (S.9) 

In Eq. (S.9), we have used the definition for superficial velocity, vs  vp , a term 

commonly used in porous media flow because of its classical treatment in Darcy’s law.  

Eq. (S.9) can be rearranged to give a formula for vs in terms of the concentration ratio: 

 
vs  vb0

hb

wt


C 

fc C 
 (S.10) 

Eq. (S.10) is an important formula for our fluorescence-based approach because it 

demonstrates that superficial velocity can be predicted from just system parameters (vb0, 

hb, wt, fc) and experimental measurements of C  alone.  With respect to our detection 

method, fluorescence intensity (FI) detected on the filtrate side is normalized to the 

maximum FI located uniformly on the retentate side, yielding a relative FI value that is 

equivalent to the ratio of solute concentrations between the two sides, C .  

As mentioned above, fluid flow through porous media is governed by the classical 

Darcy’s Law, which relates the pressure drop across a porous layer to the superficial 

velocity of the bulk fluid,[2]  

 
vs 

k


pT


 (S.11) 

where k is the specific permeability;  is the dynamic viscosity of the fluid; and pT is the 

transmembrane pressure.  pT can be determined by considering the mid-length pressures 



in the top and bottom microchannels, pt,m and pb,m respectively, based on the applied flow 

rates in both channels and the assumption that pressure decreases linearly along both 

lengths.  Because the microchannels have rectangular cross-sections, the velocity profiles 

in top and bottom microchannels, vt(x,z) and vb(y,z) respectively, can be approximated by 

the Purday approximation.[3]  For example, for the bottom microchannel velocity profile, 

we have: 
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where m and n are empirical parameters dependent on channel aspect ratio h/w.  For 

 < 1/3, m = 1.7 + 0.5-1.4, and n = 2.  By simplifying the Navier-Stokes equation for 

steady incompressible flow at low Reynolds number, the pressure gradient can be related 

to the second derivative of the velocity, and thus the pressure drop along the length of the 

microchannel can be written as: 
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Note that Eq. (S.13) has the familiar form of the pressure drop for steady laminar flow 

between infinite parallel plates, with the addition of the (m+1)/m term to account for side 

wall effects.  A similar equation can also be derived for pressure drop in the top 

microchannel.  The pressures at the channel mid-lengths Lt/2 and Lb/2 can then be 

determined, yielding the following formula for pT: 
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With this relationship for pT, and the formula relating vs to C , a closed-form solution 

for specific permeability can be written by combining Eqs. (S.10), (S.11), and (S.14): 
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The significance of Eq. (S.15) lies in the fact that k can be determined by only measuring  

C , since all other variables are known system parameters.   

 Finally, we discuss steric and viscous effects that determine fc for the porous 

layer.  Each of the secondary effects, fsteric and fviscous, reduces the theoretical flux through 

the pores independently, and the combined effect through their product yields the total 

effect of fc: 

 fc  fsteric  fviscous (S.16) 

The steric effect refers to the finite molecular size of the solute, which effectively reduces 

the available pore area for solute flux by an amount related to the solute radius, s,[1] 
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Eq. (S.17) is the ratio between available pore area for solute flux and actual pore area for 

fluid flow, where rp is the pore radius.   

The viscous effect refers to the hydraulic resistance of the small pores to the 

finite-sized solute molecules, and can be approximated by the formula derived by 

Faxen,[1] 
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The variables and known system parameters used in this derivation are summarized in 

Table S.1 below.   

 
 
 



 

Table S.1. Reference List of Variables and Measured System Parameters 

Parameter Symbol Value Units 
Microchannels   
 Microchannel height h = ht = hb 120 m 
 Microchannel width w = wt = wb 800 m 
 Top microchannel length Lt 25 mm 
 Bottom microchannel length Lb 50 mm
 Bottom channel cross-sectional area Ab = wbhb 0.096 mm2
Membrane   
 Membrane thickness  11 m 
 Pore density (manufacturer specifications) N0 16,000 pores/mm2 
 Pore density (SEM image) N0 17,700 pores/mm2 
 Porosity (SEM image)  0.0169 
 Pore radius (manufacturer specifications) rp 0.5 m
 Pore radius (SEM image) rp 0.537 ± 0.043 m 
 Membrane area Am = wbwt 0.64 mm2 
Fluid and Solute Properties    
 Dynamic fluid viscosity  0.001 N·s/m2 
 Solute diffusivity (FITC-BSA)[4] Ds 60.7 x 10-6 mm2/s 
 Solute radius[5] s 3.5 nm 
Empirical Constants    
 Diffusive flux ratio, pore-to-free solution  fd - [1] 
 Convective flux ratio, pore-to-free solution fc 0.973 [1] 
 Viscous effect factor fviscous 0.986 [1] 
 Steric effect factor fsteric 0.987 [1] 
 Empirical constant, Purday approx. m 8.82 [1] 
 Empirical constant, Purday approx. n 2 [1] 
Other Variables    
 Solute concentration c = c(z)  mol/m3 
 Filtrate concentration Cf  mol/m3 
 Maximum concentration Cmax  mol/m3 
 Concentration ratio C  [1] 
 Bottom channel velocity, upstream of membrane vb0  m/s 
 Bottom channel velocity, downstream of membrane vb1  m/s 
 Superficial velocity vs  m/s 
 Pore velocity vp  m/s 
 Solute flux, pore Jp  mol/(m2s) 
 Solute flux, free solution J  mol/(m2s) 
 Pore Peclet number Pep  [1] 
 Channel Peclet number Pec  [1] 
 Transmembrane pressure pT  Pa 
 Mid-length pressure, top channel pt,m  Pa 
 Mid-length pressure, bottom channel pb,m  Pa 
 Measured permeability k  m2 
 Theoretical permeability k0  m2 
 Percentage error E  % 

 



 

Comparison of Theory and Experiment 

The derivation above shows how permeability can be determined from 

experimental LIF measurements of solute concentration.  To validate the accuracy of our 

derivation and the predicted permeability values determined by this method, we 

compared the measured value of permeability for an untreated plain track-etched 

membrane to a theoretical estimate of permeability, based on the cylindrical pore flow 

model.   

Cylindrical Pore Flow Model 

Track-etched membranes consist of a parallel arrangement of straight cylindrical 

pores that individually act as fluid conduits.  For a single pore, the flow rate through the 

pore, q, is governed by the Hagen-Poiseuille law: 

 
q 

rp
4

8
dp

dz
 (S.19) 

Multiplying the flow rate for a single pore by the pore density of the membrane N0, we 

obtain the superficial velocity similarly defined in Darcy’s law: 

 
vs  N0q 
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Comparing Eq. (S.20) to Eq. (S.11) shows that theoretical permeability based on the 

cylindrical pore flow model, k0, can be written as 

 
k0 

N 0rp
4

8
 (S.21) 

Thus, a theoretical estimate of permeability can be determined by measuring pore density 

and pore radius of the membrane.   



Scanning Electron Microscopy 
 
 Scanning electron microscopy was used to acquire an image of the membrane 

surface for determining pore density and pore radius (Figure S-3A).  Image analysis 

(ImageJ, NIH) showed pore density N0 = 17,700 pores/mm2, and pore radius rp = 0.543 ± 

0.093 m (Figure S-3B), with one outlier (rp = 1.67 m) as confirmed by Grubbs’ test[6] 

(P<0.01).  These values are comparable to manufacturer’s specifications (N0 = 16,000 

pores/mm2; rp = 0.50 m), but are ~10% larger for both values. 

 
Error Analysis 
 
 We compared measured and theoretical permeability values based on our 

measurements of membrane properties and fluorescence detection of solute 

concentration.  We were interested in analyzing the sensitivity of the model to changes in 

membrane properties, specifically differences in pore radius from manufacturer 

specifications to measured values, and the effect of including secondary steric and 

viscous effects in the calculations. 

 



 
 
Figure S-3.  (A) Image of top view of track-etched PET membrane obtained by scanning 
electron microscopy.  White arrow indicates outlier in pore distribution.  (B) Histogram 
showing distribution of pore radii.  
 
 
 Percentage error was calculated by using the measured k values as reference: 
 
 

E 
k k0

k
100% (S.22) 

The results of the error analysis are summarized in Table S.2.  Manufacturer 

specifications were found to be inadequate for providing an accurate theoretical value to 

validate our measured values.  Using pore radius obtained from scanning electron 

microscopy vastly reduced the discrepancy between measurement and theory.  By 

including steric and viscous effects, we found that our model and measurements were in 

excellent agreement, with less than 1% error between theory and measurement.   

 
 
 



Table S.2.  Error between Measured and Theoretical Permeability Values 

  Theoretical k0 (10-10 mm2) 
  Manufacturer 

specifications 
Measured pore 

parameters 
Measured k (10-10 mm2) 3.93 5.77 

No secondary effects 5.43 27.6% 6.3% 
With secondary effects 5.73 31.4% 0.7% 
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